十分钟成为 Contributor 系列 | 助力 TiDB 表达式计算性能提升 10 倍

Yuanjia Zhang 社区动态 2019-09-16

最近我们扩展了 TiDB 表达式计算框架,增加了向量化计算接口,初期的性能测试显示,多数表达式计算性能可大幅提升,部分甚至可提升 1~2 个数量级。为了让所有的表达式都能受益,我们需要为所有内建函数实现向量化计算。

TiDB 的向量化计算是在经典 Volcano 模型上的进行改进,尽可能利用 CPU Cache,SIMD Instructions,Pipeline,Branch Predicatation 等硬件特性提升计算性能,同时降低执行框架的迭代开销,这里提供一些参考文献,供感兴趣的同学阅读和研究:

  1. MonetDB/X100: Hyper-Pipelining Query Execution

  2. Balancing Vectorized Query Execution with Bandwidth-Optimized Storage

  3. The Design and Implementation of Modern Column-Oriented Database Systems

在这篇文章中,我们将描述:

  1. 如何在计算框架下实现某个函数的向量化计算;

  2. 如何在测试框架下做正确性和性能测试;

  3. 如何参与进来成为 TiDB Contributor。

表达式向量化

1.如何访问和修改一个向量

在 TiDB 中,数据按列在内存中连续存在 Column 内,Column 详细介绍请看:TiDB 源码阅读系列文章(十)Chunk 和执行框架简介。本文所指的向量,其数据正是存储在 Column 中。

我们把数据类型分为两种:

  1. 定长类型:Int64Uint64Float32Float64DecimalTimeDuration

  2. 变长类型:StringBytesJSONSetEnum

定长类型和变长类型数据在 Column 中有不同的组织方式,这使得他们有如下的特点:

  1. 定长类型的 Column 可以随机读写任意元素;

  2. 变长类型的 Column 可以随机读,但更改中间某元素后,可能需要移动该元素后续所有元素,导致随机写性能很差。

对于定长类型(如int64),我们在计算时会将其转成 Golang Slice(如[]int64),然后直接读写这个 Slice。相比于调用 Column 的接口,需要的 CPU 指令更少,性能更好。同时,转换后的 Slice 仍然引用着 Column 中的内存,修改后不用将数据从 Slice 拷贝到 Column 中,开销降到了最低。

对于变长类型,元素长度不固定,且为了保证元素在内存中连续存放,所以不能直接用 Slice 的方式随机读写。我们规定变长类型数据以追加写(append)的方式更新,用 Column 的Get()接口进行读取。

总的来说,变长和定长类型的读写方式如下:

  1. 定长类型(以int64为例)

    a.ResizeInt64s(size, isNull):预分配 size 个元素的空间,并把所有位置的null标记都设置为isNull

    b.Int64s():返回一个[]int64的 Slice,用于直接读写数据;

    c.SetNull(rowID, isNull):标记第rowID行为isNull

  2. 变长类型(以string为例)

    a.ReserveString(size):预估 size 个元素的空间,并预先分配内存;

    b.AppendString(string): 追加一个 string 到向量末尾;

    c.AppendNull():追加一个null到向量末尾;

    d.GetString(rowID):读取下标为rowID的 string 数据。

当然还有些其他的方法如IsNull(rowID)MergeNulls(cols)等,就交给大家自己去探索了,后面会有这些方法的使用例子。

2. 表达式向量化计算框架

向量化的计算接口大概如下(完整的定义在这里):

vectorized()boolvecEvalXType(input *Chunk, result *Column)埃罗r
  • XType可能表示Int,String等,不同的函数需要实现不同的接口;

  • input表示输入数据,类型为*Chunk

  • result用来存放结果数据。

外部执行算子(如 Projection,Selection 等算子),在调用表达式接口进行计算前,会通过vectorized()来判断此表达式是否支持向量化计算,如果支持,则调用向量化接口,否则就走行式接口。

对于任意表达式,只有当其中所有函数都支持向量化后,才认为这个表达式是支持向量化的。

比如(2+6)*3,只有当MultiplyIntPlusInt函数都向量化后,它才能被向量化执行。

为函数实现向量化接口

要实现函数向量化,还需要为其实现vecEvalXType()vectorized()接口。

  • vectorized()接口中返回true,表示该函数已经实现向量化计算;

  • vecEvalXType()实现此函数的计算逻辑。

尚未向量化的函数在issue/12058中,欢迎感兴趣的同学加入我们一起完成这项宏大的工程。

向量化代码需放到以_vec.go结尾的文件中,如果还没有这样的文件,欢迎新建一个,注意在文件头部加上 licence 说明。

这里是一个简单的例子PR/12012,以builtinLog10Sig为例:

  1. 这个函数在expression/builtin_math.go文件中,则向量化实现需放到文件expression/builtin_math_vec.go中;

  2. builtinLog10Sig原始的非向量化计算接口为evalReal(),那么我们需要为其实现对应的向量化接口为vecEvalReal()

  3. 实现完成后请根据后续的说明添加测试。

下面为大家介绍在实现向量化计算过程中需要注意的问题。

1.如何获取和释放中间结果向量

存储表达式计算中间结果的向量可通过表达式内部对象bufAllocatorget()put()来获取和释放,参考PR/12014,以builtinRepeatSig的向量化实现为例:

buf2, err :=b.bufAllocator.get(types.ETInt, n)iferr != nil { return err } deferb.bufAllocator.put(buf2)// 注意释放之前申请的内存

2. 如何更新定长类型的结果

如前文所说,我们需要使用ResizeXType()XTypes()来初始化和获取用于存储定长类型数据的 Golang Slice,直接读写这个 Slice 来完成数据操作,另外也可以使用SetNull()来设置某个元素为NULL。代码参考PR/12012,以builtinLog10Sig的向量化实现为例:

f64s :=result.Float64s ()fori :=0; i < n; i++ {ifisNull {result.SetNull(i,true) }else{ f64s[i] = math.Log10(f64s[i]) } }

3. 如何更新变长类型的结果

如前文所说,我们需要使用ReserveXType()来为变长类型预分配一段内存(降低 Golang runtime.growslice() 的开销),使用AppendXType()来追加一个变长类型的元素,使用GetXType()来读取一个变长类型的元素。代码参考PR/12014,以builtinRepeatSig的向量化实现为例:

result.ReserveString(n) ... fori:=0;i< n;i++ { str := buf.GetString(i) if isNull { result.AppendNull() } else { result.AppendString(strings.Repeat(str, int(num))) } }

4. 如何处理 Error

所有受 SQL Mode 控制的 Error,都利用对应的错误处理函数在函数内就地处理。部分 Error 可能会被转换成 Warn 而不需要立即抛出。

这个比较杂,需要查看对应的非向量化接口了解具体行为。代码参考PR/12042,以builtinCastIntAsDurationSig的向量化实现为例:

fori :=0; i < n; i++ {... dur,err:= types.NumberToDuration(i64s[i], int8(b.tp.Decimal))iferr!= nil {iftypes.ErrOverflow.Equal(err) {err= b.ctx.GetSessionVars().StmtCtx.HandleOverflow(err,err)// 就地利用对应处理函数处理错误}iferr!= nil {// 如果处理不掉就抛出returnerr} result.SetNull(i, true)continue} ... }

5. 如何添加测试

我们做了一个简易的测试框架,可避免大家测试时做一些重复工作。

该测试框架的代码在expression/bench_test.go文件中,被实现在testVectorizedBuiltinFuncbenchmarkVectorizedBuiltinFunc两个函数中。

我们为每一个builtin_XX_vec.go文件增加了builtin_XX_vec_test.go测试文件。当我们为一个函数实现向量化后,需要在对应测试文件内的vecBuiltinXXCases变量中,增加一个或多个测试 case。下面我们为 log10 添加一个测试 case:

varvecBuiltinMathCases = map[string][]vecExprBenchCase { ast.Log10: { {types.ETReal,[]types.EvalType{types.ETReal}, nil}, }, }

具体来说,上面结构体中的三个字段分别表示:

  1. 该函数的返回值类型;

  2. 该函数所有参数的类型;

  3. 是否使用自定义的数据生成方法(dataGener),nil表示使用默认的随机生成方法。

对于某些复杂的函数,你可自己实现 dataGener 来生成数据。目前我们已经实现了几个简单的 dataGener,代码在expression/bench_test.go中,可直接使用。

添加好 case 后,在 expression 目录下运行测试指令:

# 功能测试GO111MODULE=on go test -check.f TestVectorizedBuiltinMathFunc# 性能测试go test -v -benchmem-bench=BenchmarkVectorizedBuiltinMathFunc-run=BenchmarkVectorizedBuiltinMathFunc

在你的 PR Description 中,请把性能测试结果附上。不同配置的机器,性能测试结果可能不同,我们对机器配置无任何要求,你只需在 PR 中带上你本地机器的测试结果,让我们对向量化前后的性能有一个对比即可。

如何成为 Contributor

为了推进表达式向量化计算,我们正式成立 Vectorized Expression Working Group,其具体的目标和制度详见这里。与此对应,我们在TiDB Community Slack中创建了wg-vec-expr channel供大家交流讨论,不设门槛,欢迎感兴趣的同学加入。

如何成为 Contributor:

  1. 在此issue内选择感兴趣的函数并告诉大家你会完成它;

  2. 为该函数实现vecEvalXType()vectorized()的方法;

  3. 在向量化测试框架内添加对该函数的测试;

  4. 运行make dev,保证所有 test 都能通过;

  5. 发起 Pull Request 并完成 merge 到主分支。

如果贡献突出,可能被提名为 reviewer,reviewer 的介绍请看这里

如果你有任何疑问,也欢迎到 wg-vec-expr channel 中提问和讨论。

点击查看更多成为 Contributor 系列文章

目录